Manganese exposure induces hyperactivity and dopaminergic dysfunction in young C57Bl/6 mice

Jordyn M. Wilcox, Adriana A. Tienda, Brittany D. Spitznagel, and Fiona E. Harrison

BACKGROUND

- Manganese (Mn) is an essential micronutrient critical for development, neurotransmitter homeostasis, and several enzymatic reactions but is neurotoxic in excess.
- Exposure to high levels of Mn via contaminated drinking water or polluted air is associated with poorer cognition and a higher incidence of attention-deficit/hyperactivity disorder (ADHD) in adolescents.
- Altered functioning of the dopaminergic system has long been strongly implicated in the etiology of ADHD.

Hypothesis

Excess Mn exposure alters the dopaminergic neurotransmitter system leading to significant changes in behavior.

Acknowledgements

- Funding: R01 ES031401
- Neurobehavior Core
 VANDERBILT UNIVERSITY MEDICAL CENTER

EXPERIMENTAL DESIGN & RESULTS

Fig. 1 Chronic high dietary-Mn exposure caused hyperactivity and altered dopaminergic system proteins in female mice only, despite no significant accumulation in striatal Mn concentration. *p<0.05, **p<0.01, ***p<0.001

Fig. 2 Acute systemic Mn exposure both decreased total activity and attenuated the activity-inducing effect of scopolamine selectively in female mice. *p<0.05

CONCLUSIONS

- Mn-induced changes in activity are both sex-dependent and route-dependent
- Environmental exposure to metals such as Mn directly impacts the dopaminergic system and related-behaviors